The methyltransferase G9a regulates HoxA9-dependent transcription in AML.
نویسندگان
چکیده
Chromatin modulators are emerging as attractive drug targets, given their widespread implication in human cancers and susceptibility to pharmacological inhibition. Here we establish the histone methyltransferase G9a/EHMT2 as a selective regulator of fast proliferating myeloid progenitors with no discernible function in hematopoietic stem cells (HSCs). In mouse models of acute myeloid leukemia (AML), loss of G9a significantly delays disease progression and reduces leukemia stem cell (LSC) frequency. We connect this function of G9a to its methyltransferase activity and its interaction with the leukemogenic transcription factor HoxA9 and provide evidence that primary human AML cells are sensitive to G9A inhibition. Our results highlight a clinical potential of G9A inhibition as a means to counteract the proliferation and self-renewal of AML cells by attenuating HoxA9-dependent transcription.
منابع مشابه
H3K9 methyltransferase G9a negatively regulates UHRF1 transcription during leukemia cell differentiation
Histone H3K9 methyltransferase (HMTase) G9a-mediated transcriptional repression is a major epigenetic silencing mechanism. UHRF1 (ubiquitin-like with PHD and ring finger domains 1) binds to hemimethylated DNA and plays an essential role in the maintenance of DNA methylation. Here, we provide evidence that UHRF1 is transcriptionally downregulated by H3K9 HMTase G9a. We found that increased expre...
متن کاملG9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription.
Methylation of DNA and lysine 9 of histone H3 (H3K9) are well-conserved epigenetic marks for transcriptional silencing. Although H3K9 methylation directs DNA methylation in filamentous fungi and plants, this pathway has not been corroborated in mammals. G9a and GLP/Eu-HMTase1 are two-related mammalian lysine methyltransferases and a G9a/GLP heteromeric complex regulates H3K9 methylation of euch...
متن کاملLysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation.
Skeletal muscle cells have served as a paradigm for understanding mechanisms leading to cellular differentiation. The proliferation and differentiation of muscle precursor cells require the concerted activity of myogenic regulatory factors including MyoD. In addition, chromatin modifiers mediate dynamic modifications of histone tails that are vital to reprogramming cells toward terminal differe...
متن کاملCCAAT displacement protein/cut homolog recruits G9a histone lysine methyltransferase to repress transcription.
CCAAT displacement protein/cut homolog (CDP/cut) is a highly conserved homeodomain protein that contains three cut repeat sequences. CDP/cut is a transcriptional factor for many diverse cellular and viral genes that are involved in most cellular processes, including differentiation, development, and proliferation. Here, we report that CDP/cut interacts with a histone lysine methyltransferase (H...
متن کاملCombined epigenetic therapy with the histone methyltransferase EZH2 inhibitor 3-deazaneplanocin A and the histone deacetylase inhibitor panobinostat against human AML cells.
The polycomb repressive complex (PRC) 2 contains 3 core proteins, EZH2, SUZ12, and EED, in which the SET (suppressor of variegation-enhancer of zeste-trithorax) domain of EZH2 mediates the histone methyltransferase activity. This induces trimethylation of lysine 27 on histone H3, regulates the expression of HOX genes, and promotes proliferation and aggressiveness of neoplastic cells. In this st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 28 4 شماره
صفحات -
تاریخ انتشار 2014